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ABSTRACT

Let R be a prime ring with extended centroid C, g a nonzero general-

ized derivation of R, f(x1, . . . , xn) a multilinear polynomial over C, I a

nonzero right ideal of R.

If [g(f(r1, . . . , rn)), f(r1, . . . , rn)] = 0, for all r1, . . . , rn ∈ I, then either

g(x) = ax, with (a − γ)I = 0 and a suitable γ ∈ C or there exists an

idempotent element e ∈ soc(RC) such that IC = eRC and one of the

following holds:

(i) f(x1, . . . , xn) is central valued in eRCe;

(ii) g(x) = cx+xb , where (c+ b+α)e = 0, for α ∈ C, and f(x1, . . . , xn)2

is central valued in eRCe;

(iii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Throughout this paper, R always denotes a prime ring with center Z(R) and

extended centroid C, U its right Utumi quotient ring. Here we will consider

some related problems concerning generalized derivations on multilinear poly-

nomials in prime rings. Many authors have studied generalized derivations in

the context of prime and semiprime rings (see [6], [13] for reference). By a

generalized derivation on R one usually means an additive map g: R → R such

that, for any x, y ∈ R, g(xy) = g(x)y +xd(y), for some derivation d in R. Obvi-

ously any derivation is a generalized derivation. Moreover, other basic examples

of generalized derivation are the following: (i) g(x) = ax + xb, for a, b ∈ R;

(ii) g(x) = ax, for some a ∈ R.
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The well-known theorem of Posner established that a prime ring R must be

commutative if it admits a derivation d such that [d(x), x] ∈ Z(R), for all x ∈ R,

[17]. Later Lanski generalized this result to left ideals. More precisely, in [8] he

proved that if R is a semiprime ring, I a nonzero left ideal, d a nonzero derivation

on R and n, t0, t1, . . . , tn positive integers such that the extended commutator

[d(xt0 ), xt1 , xt2 , . . . , xtn ] is zero for all x ∈ I, then either d(I) = {0} or the ideal

of R generated by d(I) and d(R)I lies in the center of R. Hence, if R is prime,

then R is commutative.

More recently, in [12], Lee studied an Engel condition with derivation for

polynomials on right (left) ideals of R. If you fix the attention on multilinear

polynomials, then Lee’s result has the following flavor: let I be a nonzero right

ideal of R and f(x1, . . . , xn) a nonzero multilinear polynomial over C such that

[d(f(r1, . . . , rn)), f(r1, . . . , rn)]k = 0, for any r1, . . . , rn ∈ I, then there exists

an idempotent element e ∈ soc(RC) such that either f(x1, . . . , xn) is central

valued on the central simple algebra eRCe or char(R) = 2 and eRCe satisfies

the standard identity s4.

Here we will study what happens in case a similar Engel condition is satisfied

by a generalized derivation g, more precisely, we will consider the case k = 1

and prove the following

Theorem: Let R be a prime ring with extended centroid C, g a nonzero

generalized derivation of R, f(x1, . . . , xn) a multilinear polynomial over C,

I a nonzero right ideal of R. If [g(f(r1, . . . , rn), f(r1, . . . , rn)] = 0, for all

r1, . . . , rn ∈ I, then either g(x) = ax, with (a− γ)I = 0 and a suitable γ ∈ C or

there exists an idempotent element e ∈ soc(RC) such that IC = eRC and one

of the following holds:

(i) f(x1, . . . , xn) is central valued in eRCe;

(ii) g(x) = cx + xb , where (c + b + α)e = 0, for α ∈ C, and f(x1, . . . , xn)2 is

central valued in eRCe;

(iii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Throughout the paper, unless stated otherwise, R will be a prime ring,

f(x1, . . . , xn) a multilinear polynomial of R, g 6= 0 a generalized derivation of

R and I a nonzero right ideal of R such that [g(f(r1, . . . , rn), f(r1, . . . , rn)] = 0,

for all r1, . . . , rn ∈ I.

For any ring S, Z(S) will denote its center, and [a, b] = ab − ba. In addition,

s4 will denote the standard identity in 4 variables.

The related object we need to mention is the right Utumi quotient ring U of

a ring R (sometimes, as in [1], U is called the maximal right ring of quotients).
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The definitions, the axiomatic formulations and the properties of this quotient

ring U can be found in [1]. In any case, when R is a prime ring, we need only

the following properties of U :

1) R ⊆ U ;

2) U is a prime ring;

3) The center of U , denoted by C, is a field which is called the extended

centroid of R.

We also make a frequent use of the theory of generalized polynomial identities

and differential identities (see [1], [3], [7], [10], [16]). In particular, we recall that

when R is prime and I a nonzero right ideal of R, then I, IR and IU satisfy

the same generalized polynomial identities [3].

In [13] T. K. Lee extended the definition of a generalized derivation as follows:

by a generalized derivation we mean an additive mapping g: I −→ U such that

g(xy) = g(x)y + xd(y), for all x, y ∈ I, where I is a dense right ideal of R and

d is a derivation from I into U .

Moreover, Lee also proved that every generalized derivation can be uniquely

extended to a generalized derivation of U and thus all generalized derivations

of R will be implicitly assumed to be defined on the whole U and obtain the

following result.

Theorem (Theorem 3 in [13]): Every generalized derivation g on a dense right

ideal of R can be uniquely extended to U , and assumes the form g(x) = ax+d(x),

for some a ∈ U and a derivation d on U .

More details about generalized derivations can be found in [6], [13], [14].

Here we begin with the following

Theorem 1: Let R be a prime ring, a, b ∈ R and f(x1, . . . , xn) a noncentral

multilinear polynomial over C such that

[af(r1, . . . , rn) − f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0,

for any r1, . . . , rn ∈ R. Then one of the following conclusions holds:

(i) a, b ∈ Z(R);

(ii) f(x1, . . . , xn)2 is central valued on R and a + b ∈ C;

(iii) char(R) = 2 and R satisfies the standard identity s4.

Proof: Suppose that either a /∈ Z(R) or b /∈ Z(R). In this case

[af(x1, . . . , xn) − f(x1, . . . , xn)b, f(x1, . . . , xn)]
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is a nontrivial generalized polynomial identity for R. By Theorem 2 in [2],

[af(x1, . . . , xn) − f(x1, . . . , xn)b, f(x1, . . . , xn)] is also an identity for RC. By

Martindale’s result in [16] RC is a primitive ring with nonzero socle. There

exists a vectorial space V over a division ring D such that RC is dense of

D-linear transformations over V .

If dimDV = ∞, by Lemma 2 in [19], RC satisfies the following generalized

identity [ax − xb, x]. Suppose there exists v ∈ V such that {v, va} are linearly

D-independent. By the density of RC, there exists w ∈ V such that {w, v, va}

are linearly D-independent and x0 ∈ RC such that vx0 = 0, (va)x0 = w and

wx0 = v. This leads to a contradiction, 0 = v[ax0 − x0b, x0] = v 6= 0. Thus for

all v ∈ V , {v, va} are linearly D-dependent, which implies that a ∈ C. From

this, RC satisfies −[xb, x]. As above, suppose that there exists v ∈ V such that

{v, vb} are linearly D-independent. Then there exists y0 ∈ RC such that vy0 = v

and (vb)y0 = 0. This implies that 0 = −v[xb, x] = vb 6= 0, a contradiction. Also

in this case we conclude that {v, vb} are linearly D-dependent, for all v ∈ V ,

and so b ∈ C.

Consider now the case dimDV = k a finite positive integer. In this

case, RC is a simple ring which satisfies a nontrivial generalized poly-

nomial identity. By [18, Theorem 2.3.29] RC ⊆ Mt(F ), for a suitable

field F , moreover, Mt(F ) satisfies the same generalized identity of RC, hence

[af(r1, . . . , rn) − f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0, for any r1, . . . , rn ∈ Mt(F ),

moreover, f(x1, . . . , xn) is a noncentral polynomial for Mt(F ). If t = 1 there is

nothing to prove. Let t ≥ 2.

Suppose that either char(R) 6= 2 or R does not satisfy s4, if not we are done.

Since f(x1, . . . , xn) is not central then, by [15], there exist u1, . . . , un ∈ Mt(F )

and α ∈ F − {0}, such that f(u1, . . . , un) = αekl, with k 6= l. Here ekl denotes

the usual matrix unit with 1 in (k, l)-entry and zero elsewhere. Moreover, since

the set {f(v1, . . . , vn) : v1, . . . , vn ∈ Mt(F )} is invariant under the action of all

F-automorphisms of Mt(F ), then for any i 6= j there exist r1, . . . , rn ∈ Mt(F )

such that f(r1, . . . , rn) = αeij . Hence, for all i 6= j,

0 = [af(r1, . . . , rn) − f(r1, . . . , rn)b, f(r1, . . . , rn)] = −α2eij(a + b)eij .

In other words, the (j, i)-th entry of the matrix a + b is zero, for all j 6= i. Say

a + b = c =
∑

i ciieii, with cii ∈ F , that is c is a diagonal matrix.

Moreover, if ϕ is an automorphism of Mt(F ), the same conclusion holds for

ϕ(c), since as above

0 = [ϕ(a)ϕ(f(r1, . . . , rn)) − ϕ(f(r1, . . . , rn))ϕ(b), ϕ(f(r1, . . . , rn))]
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Therefore, for any i 6= j, ϕ(c) = (1 + eij)c(1 − eij) must be a diagonal matrix.

Thus, (cjj − cii)eij = 0, that is cjj = cii and c is a central element. This implies

that a = −b + γ, for some γ ∈ F . Therefore the main assumption says that

0 = [af(r1, . . . , rn) + f(r1, . . . , rn)a, f(r1, . . . , rn)] = [a, f(r1, . . . , rn)2]

for all r1, . . . , rn ∈ Mt(F ). Let G the additive subgroup generated by the

polynomial f(x1, . . . , xn)2. By [2] f(x1, . . . , xn)2 is a central polynomial, unless

when [Mt(F ), Mt(F )] ⊆ G. In this last case we have that [a, [r1, r2]] = 0,

for all r1, r2 ∈ Mt(F ). For i 6= j let [r1, r2] = eij . We get 0 = aeij − eija

and left multiplying by ejj it follows that ejjaeij = 0, which means that the

(j, i)-entry of the matrix a is zero. Therefore, a is a diagonal matrix and, as

above, it is easy to prove that a is central. Then b is also central in Mt(F ).

Therefore, in any case we get the contradiction that both a and b are central

elements of R.

As a natural consequence we obtain the following:

Corollary 1: Let R be a prime ring, a ∈ R and f(x1, . . . , xn) a noncentral

multilinear polynomial over C.

If [af(r1, . . . , rn), f(r1, . . . , rn)] = 0, for any r1, . . . , rn ∈ R, then either

a ∈ Z(R) or char(R) = 2 and R satisfies the standard identity s4.

Corollary 2: Let R be a prime ring, b ∈ R and f(x1, . . . , xn) a noncentral

multilinear polynomial over C.

If [f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0, for any r1, . . . , rn ∈ R, then either

b ∈ Z(R) or char(R) = 2 and R satisfies the standard identity s4.

Now we extend the previous results to a nonzero right ideal of R. First we

recall the following notation:

f(x1, . . . , xn) = x1 · x2 · · ·xn +
∑

σ∈Sn

ασxσ(1) · · ·xσ(n)

for some ασ ∈ C and we denote by fd(x1, . . . , xn) the polynomial obtained from

f(x1, . . . , xn) by replacing each coefficient ασ with d(ασ · 1). Thus, for a usual

derivation d, we write

d(f(r1, . . . , rn)) = fd(r1, . . . , rn) +
∑

i

f(r1, . . . , d(ri), . . . , rn),

for all r1, . . . , rn ∈ R.
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Lemma 1: Let R be a prime ring, g a nonzero generalized derivation of R, I a

nonzero right ideal of R and f(x1, . . . , xn) a noncentral multilinear polynomial

over C such that [g(f(r1, . . . , rn)), f(r1, . . . , rn)] = 0, for any r1, . . . , rn ∈ I.

Then R satisfies a nontrivial generalized polynomial identity, unless g(x) = ax

and there exists λ ∈ C such that (a − λ)I = 0.

Proof: Consider the generalized derivation g assuming the form g(x) =

ax + d(x), for an usual derivation d of R. We divide the proof into two cases:

Case 1: Suppose that the derivation d is inner, induced by some element

q ∈ Q, that is d(x) = [q, x].

Thus we have, for all r1, . . . , rn ∈ I

[af(r1, . . . , rn) + d(f(r1, . . . , rn)), f(r1, . . . , rn)]

= [(a + q)f(r1, . . . , rn) − f(r1, . . . , rn)q, f(r1, . . . , rn)] = 0

and denote a + q = c, so that

[cf(r1, . . . , rn) − f(r1, . . . , rn)q, f(r1, . . . , rn)] = 0.

If both c and q are central elements we conclude that g(x) = ax, a ∈ C. Thus

consider that either q or c is noncentral.

Let u ∈ I such that {cu, u} are linearly C-independent. If qu = βu for some

β ∈ C, then R satisfies

cf(ux1, . . . , uxn)2 − βf(ux1, . . . , uxn)2

−f(ux1, . . . , uxn)cf(ux1, . . . , uxn) + f(ux1, . . . , uxn)2q

which is a nontrivial GPI. On the other hand

[cf(ux1, . . . , uxn) − f(ux1, . . . , uxn)q, f(ux1, . . . , uxn)]

is also a nontrivial GPI in case {q, qu} are linearly C-independent.

Let now cu = αu for some α ∈ C. Then R satisfies

αf(ux1, . . . , uxn)2 − f(ux1, . . . , uxn)qf(ux1, . . . , uxn)

−f(ux1, . . . , uxn)αf(ux1, . . . , uxn) − f(ux1, . . . , uxn)2q

= −f(ux1, . . . , uxn)qf(ux1, . . . , uxn) − f(ux1, . . . , uxn)2q

which is again a nontrivial GPI for R.
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Case 2: Let now d be an outer derivation. Since I satisfies

[af(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)]

it also satisfies

[(a − λ)f(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)]

for any λ ∈ C.

Note that, if there exists λ ∈ C such that (a − λ)I = 0, then

[d(f(x1, . . . , xn)), f(x1, . . . , xn)]

is a differential identity for I. In this case, by [12], one of the following holds:

– [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, so R is a GPI-ring;

– char(R) = 2 and s4(I, I, I, I)I = 0 and again R is GPI;

– d = 0 and so g(x) = ax for (a − λ)I = 0, and again we are done.

Consider the case when (a − α)I 6= 0 for all α ∈ C. Since I and IU satisfy

the same differential identities,

[af(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)]

is an identity for IU , that is, for any u ∈ I,

[af(ux1, . . . , uxn) + d(f(ux1, . . . , uxn)), f(ux1, . . . , uxn)]

is an identity for U . In particular, pick u ∈ I such that au 6= αu, for all α ∈ C

(it exists since (a − α)I 6= 0). Thus U satisfies the following

[

af(ux1, . . . , uxn) + fd(ux1, . . . , uxn)+

∑

i

f(ux1, . . . , d(u)xi + ud(xi), . . . , uxn), f(ux1, . . . , uxn)
]

.

Since d is an outer derivation, by Kharchenko’s result in [7], U satisfies the

identity

[

af(ux1, . . . , uxn) + fd(ux1, . . . , uxn)+

∑

i

f(ux1, . . . , d(u)xi + uyi, . . . , uxn), f(ux1, . . . , uxn)
]

which is a nontrivial GPI for R, since au and u are linearly C-independent.
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Remark 1: Without loss of generality, R is simple and equal to its own socle,

IR = I.

In fact, by Lemma 1, R is GPI and so RC has nonzero socle H with nonzero

right ideal J = IH [16]. Note that H is simple, J = JH , and J satisfies the

same basic conditions as I. Now just replace R by H , I by J and we are done.

Remark 2: Notice that if there exists λ ∈ C such that (a − λ)I = 0, then the

main assumption says that

[(a − λ)f(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)]

= [d(f(x1, . . . , xn)), f(x1, . . . , xn)]

= 0

for all x1, . . . , xn in I. In this case we obtain the required conclusions by [12].

Remark 3: It is well-known that all the following statements hold (see [11]):

(1) If f(x1, . . . , xn)xn+1 is an identity for I, then there exists an idempotent

element e ∈ soc(RC) such that IC = eRC and f(x1, . . . , xn) is an identity

for eRCe, so that a fortiori f(x1, . . . , xn) is central valued in eRCe;

(2) if [f(x1, . . . , xn), xn+1]xn+2 is an identity for I then there exists e2 =

e ∈ soc(RC) such that IC = eRC and f(x1, . . . , xn) is central valued in

eRCe;

(3) if char(R) = 2 and I satisfies s4(x1, x2, x3, x4)x5 then there exists e2 =

e ∈ soc(RC) such that IC = eRC and s4(x1, . . . , x4) is an identity for

eRCe;

(4) if g(x) = cx + xb such that (c + b + α)I = 0, for a suitable α ∈ C, and

I satisfies [f(x1, . . . , xn)2, xn+1]xn+2, then there exists e2 = e ∈ soc(RC)

such that IC = eRC, f(x1, . . . , xn)2 is central valued in eRCe and also

(b + c + α)e = 0.

Remark 4: Since R = H is a regular ring, then for any a1, . . . , an ∈ I there

exists h = h2 ∈ R such that
∑n

i=1 aiR = hR. Then h ∈ IR = I and ai = hai

for each i = 1, . . . , n.

Theorem 2: Let R be a prime ring, a, b elements of R, I a nonzero right ideal

of R and f(x1, . . . , xn) a noncentral multilinear polynomial over C such that

[af(r1, . . . , rn) − f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0, for any r1, . . . , rn ∈ I. If

there exists a suitable γ ∈ C such that (a + b + γ)I = 0, then either there exists

λ ∈ C such that (a − λ)I = 0 and b ∈ C or there exists an idempotent element

e ∈ soc(RC) such that IC = eRC and one of the following holds:

(i) (c + b + γ)e = 0 and f(x1, . . . , xn)2 is central valued in eRCe;
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(ii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Proof: By ax = −bx + γx, for all x ∈ I, we have that, for any r1, . . . , rn ∈ I,

0 = [bf(r1, . . . , rn) + f(r1, . . . , rn)b, f(r1, . . . , rn)] = [b, f(r1, . . . , rn)2].

By Theorem 6 in [12], it follows that either b ∈ C or there exists an idempotent

element e ∈ soc(RC) such that IC = eRC and either f(x1, . . . , xn)2 is central

valued in eRCe or char(R) = 2 and s4(eRCe) = 0.

Moreover, if b ∈ C we get (a − λ)x = 0 for all x ∈ I and λ = b − γ ∈ C, in

any case we are done.

Continuing our line of investigation, we need the following

Lemma 2: Let R be a prime ring, a ∈ R, I a nonzero right ideal of R and

f(x1, . . . , xn) a noncentral multilinear polynomial over C. If

[af(r1, . . . , rn), f(r1, . . . , rn)] = 0

for all r1, . . . , rn ∈ I, then either there exists γ ∈ C such that (a − γ)I = 0 or

there exists an idempotent element e ∈ soc(RC) such that IC = eRC and one

of the following holds:

(i) f(x1, . . . , xn) is central valued in eRCe;

(ii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Proof: Suppose by contradiction that no conclusion holds. In light of Remarks

2 and 3 there exist b, b1, . . . , bn+2, c1, . . . , c5 ∈ I such that

– [f(b1, . . . , bn), bn+1]bn+2 6= 0;

– if char(R) = 2, s4(c1, c2, c3, c4)c5 6= 0;

– {b, ab} are linearly C-independent.

By Remark 4, there exists an idempotent element h ∈ IH = IR such

that hR =
∑n+2

i=1 biR +
∑5

j=1 cjR + bR and bi = hbi, cj = hcj, b = hb for

any i = 1, . . . , n + 2, j = 1, . . . , 5. Since [af(hx1, . . . , hxn), f(hx1, . . . , hxn)]

is satisfied by R = H , left multiplying by (1 − h), we get that R satisfies

(1 − h)af(hx1, . . . , hxn)2. By [4], it follows that either (1 − h)ah = 0

or f(hx1, . . . , hxn)h is a generalized identity for R. In this last case,

[f(hx1, . . . , hxn), hxn+1]hxn+2 is an identity for R and this contradicts with

[f(hb1, . . . , hbn), hbn+1]hbn+2 = [f(b1, . . . , bn), bn+1]bn+2 6= 0.

Thus (1− h)ah = 0, that is ah = hah. Therefore [af(x1, . . . , xn), f(x1, . . . , xn)]

is satisfied by hRh.
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By Corollary 1, again since

[f(hb1, . . . , hbn), hbn+1]hbn+2 = [f(b1, . . . , bn), bn+1]bn+2 6= 0,

we get either ah ∈ Ch or char(R) = 2 and hRh satisfies s4.

In the first case, if ah ∈ Ch, then there exists λ ∈ C such that ahb = (λ)hb,

that is ab = λb, a contradiction.

In the second case, s4(hRh, hRh, hRh, hRh) = 0 implies that

s4(hR, hR, hR, hR)hR = 0,

and again we get a contradiction since

s4(hc1, hc2, hc3, hc4)hc5 = s4(c1, c2, c3, c4)c5 6= 0.

Remark 5: Suppose that there exist b1, . . . , bn+2 ∈ I such that

[f(b1, . . . , bn), bn+1]bn+2 6= 0.

This obviously implies that f(x1, . . . , xn)xn+1 cannot be an identity for I and

we may consider, without loss of generality f(b1, . . . , bn)bn+1 6= 0.

If you write f(x1, . . . , xn) =
∑

i ti(x1, . . . , xi−1, xi+1, . . . , xn)xi, where any ti

is a multilinear polynomial in n−1 variables, in which xi never occurs, it follows

that there exist i ∈ {1, 2, . . . , n} such that ti(x1, . . . , xi−1, xi+1, . . . , xn)xi is not

an identity for I and again we may choose, for example, tn(b1, . . . , bn−1)bn 6= 0.

Lemma 3: Let R be a prime ring, b ∈ R, I a nonzero right ideal of R and

f(x1, . . . , xn) a noncentral multilinear polynomial over C. If

[f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0

for all r1, . . . , rn ∈ I, then either b ∈ C or there exists an idempotent element

e ∈ soc(RC) such that IC = eRC and one of the following holds:

(i) f(x1, . . . , xn) is central valued in eRCe;

(ii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Proof: The proof is similar to that of Lemma 2, but, for the sake of complete-

ness, we prefer to explain the argument again.

Suppose by contradiction that there exist b1, . . . , bn+2, c1, . . . , c5 ∈ I such that

– [f(b1, . . . , bn), bn+1]bn+2 6= 0, in particular, in light of Remark 5, then

tn(b1, . . . , bn−1)bn 6= 0;
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– if char(R) = 2, s4(c1, c2, c3, c4)c5 6= 0.

By Remark 4, there exists an idempotent element h ∈ IH = IR such that

hR =
∑n+2

i=1 biR +
∑5

j=1 cjR and bi = hbi, cj = hcj , for any i = 1, . . . , n + 2,

j = 1, . . . , 5. Since [f(hx1, . . . , hxn(1 − h))b, f(hx1, . . . , hxn(1 − h))] is satisfied

by R = H , then R satisfies

tn(hx1, . . . , hxn−1)hxn(1 − h)btn(hx1, . . . , hxn−1)hxn(1 − h)

and a fortiori R satisfies

((1 − h)btn(hx1, . . . , hxn−1)hxn)3.

By a result in [5] we have that R satisfies (1 − h)btn(hx1, . . . , hxn−1)hxn and

by [4] it follows that (1− h)bh = 0, since tn(hb1, . . . , hbn−1)hbn 6= 0. Therefore,

[f(x1, . . . , xn)b, f(x1, . . . , xn)] is satisfied by hRh.

By Corollary 2, again since

[f(hb1, . . . , hbn), hbn+1]hbn+2 = [f(b1, . . . , bn), bn+1]bn+2 6= 0,

we get either that bh ∈ Ch or that char(R) = 2 and hRh satisfies s4.

Since the last case contradicts s4(hc1, hc2, hc3, hc4)hc5 6= 0, we have bh ∈ Ch,

then there exists λ ∈ C such that bh = λh. Thus

0 = [f(hx1, . . . , hxn)b, f(hx1, . . . , hxn)] = f(hx1, . . . , hxn)2(b − λ).

In this case, because of the fact that f(hb1, . . . , hbn)hbn+1 6= 0, again by [4], we

conclude that b = λ ∈ C.

Theorem 3: Let R be a prime ring, a, b ∈ R, I a nonzero right ideal of R and

f(x1, . . . , xn) a noncentral multilinear polynomial over C.

If [af(r1, . . . , rn) − f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0, for any r1, . . . , rn ∈ I,

then either there exists γ ∈ C such that (a−γ)I = 0 and b ∈ C or there exists an

idempotent element e ∈ soc(RC) such that IC = eRC and one of the following

holds:

(i) f(x1, . . . , xn) is central valued in eRCe;

(ii) (a + b + α)e = 0, for α ∈ C, and f(x1, . . . , xn)2 is central valued in eRCe;

(iii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Proof: Due to Theorem 2, if there exists α ∈ C such that (a + b + α)I = 0

then the present theorem holds. Moreover, if there exists γ ∈ C such
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that (a − γ)I = 0, it follows that [f(r1, . . . , rn)b, f(r1, . . . , rn)] = 0, for any

r1, . . . , rn ∈ I, and, by Lemma 3, we are done.

In light of this, suppose by contradiction that there exist v, w ∈ I such that

{v, av} are linearly C-independent

and

{w, (a + b)w} are linearly C-independent.

Moreover, suppose that there exist b1, . . . , bn+2, s1, . . . , sn+2, c1, . . . , c5 ∈ I such

that

– [f(b1, . . . , bn), bn+1]bn+2 6= 0;

– [f(s1, . . . , sn)2, sn+1]sn+2 6= 0;

– if char(R) = 2, s4(c1, c2, c3, c4)c5 6= 0.

Again there exists an idempotent element h ∈ IR such that

hR =

n+2
∑

i=1

biR +

n+2
∑

j=1

sjR +

5
∑

k=1

ckR + vR + wR

and bi = hbi, sj = hsj, ck = hck, for any i, j = 1, . . . , n + 2, k = 1, . . . , 5, and

v = hv, w = hw. Since [af(hx1, . . . , hxn) − f(hx1, . . . , hxn)b, f(hx1, . . . , hxn)]

is satisfied by R, left multiplying by (1 − h), we get that R satisfies

(1 − h)af(hx1, . . . , hxn)2.

By [4] it follows that either (1 − h)ah = 0 or f(hx1, . . . , hxn)h is a general-

ized identity for RC. Note that this last conclusion cannot occurs, because

f(hb1, . . . , hbn)hbn+1 = f(b1, . . . , bn)bn+1 6= 0. Thus (1 − h)ah = 0.

Moreover, since

[af(hx1, . . . , hxn(1−h))−f(hx1, . . . , hxn(1−h))b, f(hx1, . . . , hxn(1−h))] = 0,

we have that

[atn(hx1, . . . , hxn−1)hxn(1 − n)

−tn(hx1, . . . , hxn−1)hxn(1 − h)b, t(hx1, . . . , hxn−1)hxn(1 − h)] = 0;

that is

−tn(hx1, . . . , hxn−1)hxn(1 − h)btn(hx1, . . . , hxn−1)hxn(1 − h) = 0

and, in particular, ((1 − h)btn(hx1, . . . , hxn−1)hxn)3 = 0.
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By a result in [5], (1 − h)btn(hx1, . . . , hxn−1)hxn = 0.

Again by [4], since tn(hb1, . . . , hbn−1)hbn = tn(b1, . . . , bn−1)bn 6= 0 (see Re-

mark 5), we get (1 − h)bh = 0. Therefore, ah = hah and bh = hbh. Hence hRh

is a finite dimensional simple central algebra which satisfies

[af(x1, . . . , xn) − f(x1, . . . , xn)b, f(x1, . . . , xn)].

By Theorem 1 it follows that one of the following holds:

(i) there exists γ ∈ C such that (a + b − γ)h = 0, which contradicts with the

fact that {w, (a + b)(hw)} = {w, (a + b)w} are linearly C-independent.

(ii) f(x1, . . . , xn) is central valued in hRh, then [f(x1, . . . , xn), xn+1]xn+2 = 0

in hR and this contradicts

[f(hb1, . . . , hbn), hbn+1]hbn+2 = [f(b1, . . . , bn), bn+1]bn+2 6= 0;

(iii) ah, bh ∈ Ch, that is, in particular, there exists α ∈ C such that

(a − α)h = 0. This is also a contradiction since {v, a(hv)} = {v, av}

are linearly C-independent.

Finally we study the more general case and we need the following remark:

Lemma 4: Let R be a prime ring and f(x1, . . . , xn) a multilinear polynomial

over C. If, for i = 1, . . . , n,

[f(r1, . . . , zi, . . . , rn), f(r1, . . . , rn)] = 0

for all zi, r1, . . . , rn ∈ R, then the polynomial f(x1, . . . , xn) is central-valued on

R except when char(R) = 2 and R satisfies s4.

Proof: Let s ∈ R, then by assumption

[s, f(r1, . . . , rn)]2 =

[

∑

i

f(r1, . . . , [s, ri], . . . , rn), f(r1, . . . , rn)

]

= 0.

Hence the result follows by [9, Theorem].

Theorem 4: Let R be a prime K-algebra, with extended centroid C, g a

nonzero generalized derivation of R, f(x1, . . . , xn) a multilinear polynomial over

C and I a nonzero right ideal of R. If [g(f(r1, . . . , rn), f(r1, . . . , rn)] = 0, for all

r1, . . . , rn ∈ I, then either g(x) = ax, with (a− γ)I = 0 and a suitable γ ∈ C or

there exists an idempotent element e ∈ soc(RC) such that IC = eRC and one

of the following holds:
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(i) f(x1, . . . , xn) is central valued in eRCe;

(ii) g(x) = cx + xb , where (c + b + α)e = 0, for α ∈ C, and f(x1, . . . , xn)2 is

central valued in eRCe;

(iii) char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Proof: As we have already remarked, every generalized derivation g on a dense

right ideal of R can be uniquely extended to U and assumes the form g(x) =

ax + d(x), for some a ∈ U and a derivation d on U .

If d = 0 we are done by Lemma 2. Thus we suppose that d 6= 0.

For u ∈ I, U satisfies the following differential identity

[af(ux1, . . . , uxn) + d(f(ux1, . . . , uxn)), f(ux1, . . . , uxn)].

In light of Kharchenko’s theory ([7], [10]), we divide the proof into two cases:

Case 1: Let d be the inner derivation induced by the element q ∈ U , that is

d(x) = [q, x], for all x ∈ U . Thus I satisfies the generalized polynomial identity

[af(x1, . . . , xn) + qf(x1, . . . , xn) − f(x1, . . . , xn)q, f(x1, . . . , xn)]

= [(a + q)f(x1, . . . , xn) − f(x1, . . . , xn)q, f(x1, . . . , xn)].

If we denote −q = b and a + q = c, the generalized derivation g is defined as

g(x) = cx + xb, and we get the conclusion thanks to Theorem 3.

Case 2: Let d be an outer derivation of U and suppose that

[f(x1, . . . , xn), xn+1]xn+2

is not an identity for I and, in case char(R) = 2, I does not satisfy

s4(x1, . . . , x4)x5, otherwise we are done (see Remark 3). Thus, there exist

b1, . . . , bn+2, c1, . . . , c5 ∈ I such that

[f(b1, . . . , bn), bn+1]bn+2 6= 0, s4(c1, . . . , c4)c5 6= 0

and there exists h2 = h ∈ soc(RC) such that
∑n+2

i=1 biR+
∑5

j=1 cjR = hR, with

bi = hbi, cj = hcj for all i = 1, . . . , n + 2, j = 1, . . . , 5.

Since I and IU satisfy the same differential identities,

[af(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)]

is an identity for IU , that is,

[af(hx1, . . . , hxn) + d(f(hx1, . . . , hxn)), f(hx1, . . . , hxn)]
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is an identity for U . Thus U satisfies the following

[

af(hx1, . . . , hxn) + fd(hx1, . . . , hxn)

+
∑

i

f(hx1, . . . , d(h)xi + hd(xi), . . . , hxn), f(hx1, . . . , hxn)

]

.

Since d is an outer derivation, by Kharchenko’s result in [7], R satisfies the

identity

[

af(hx1, . . . , hxn) + fd(hx1, . . . , hxn)

+
∑

i

f(hx1, . . . , d(h)xi + hyi, . . . , hxn), f(hx1, . . . , hxn)

]

.

In particular, U satisfies the blended component

[

∑

i

f(hx1, . . . , hyi, . . . , hxn), f(hx1, . . . , hxn)

]

so that hUh satisfies

[f(x1, . . . , yi, . . . , xn), f(x1, . . . , xn)],

for all i = 1, . . . , n. By Lemma 4 we have that either f(x1, . . . , xn) is central

valued in hUh or char(R) = 2 and s4(hUh) = 0. In both cases we have a

contradiction, since

[f(hb1, . . . , hbn), hbn+1]hbn+2 = [f(b1, . . . , bn), bn+1]bn+2 6= 0

and

s4(hc1, . . . , hc4)hc5 = s4(c1, . . . , c4)c5 6= 0.
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